Hausdorff Distance Measure Based Interval Fuzzy Possibilistic C-Means Clustering Algorithm
نویسندگان
چکیده
Clustering algorithms have been widely used artificial intelligence, data mining and machine learning, etc. It is unsupervised classification and is divided into groups according to data sets. That is, the data sets of similarity partition belong to the same group; otherwise data sets divide other groups in the clustering algorithms. In general, to analysis interval data needs Type II fuzzy logical. Therefore, the interval fuzzy c-means clustering method was proposed to deal with symbolic interval data. However, it still has noisy and outliers problems on these symbolic interval data. Hence, we propose Hausdorff distance measure based interval fuzzy possibilistic c-means clustering algorithm to overcome the interval fuzzy c-means clustering algorithm for the symbolic interval data clustering in noisy and outlier environments. From the simulation results, the proposed Hausdorff distance measure based interval fuzzy possibilistic c-means clustering algorithm has better performance than interval fuzzy c-means clustering algorithm.
منابع مشابه
Bilateral Weighted Fuzzy C-Means Clustering
Nowadays, the Fuzzy C-Means method has become one of the most popular clustering methods based on minimization of a criterion function. However, the performance of this clustering algorithm may be significantly degraded in the presence of noise. This paper presents a robust clustering algorithm called Bilateral Weighted Fuzzy CMeans (BWFCM). We used a new objective function that uses some k...
متن کاملA Hybrid Time Series Clustering Method Based on Fuzzy C-Means Algorithm: An Agreement Based Clustering Approach
In recent years, the advancement of information gathering technologies such as GPS and GSM networks have led to huge complex datasets such as time series and trajectories. As a result it is essential to use appropriate methods to analyze the produced large raw datasets. Extracting useful information from large data sets has always been one of the most important challenges in different sciences,...
متن کاملKernel-based fuzzy and possibilistic c-means clustering
The 'kernel method' has attracted great attention with the development of support vector machine (SVM) and has been studied in a general way. In this paper, this 'method' is extended to the well-known fuzzy c-means (FCM) and possibilistic c-means (PCM) algorithms. It is realized by substitution of a kernel-induced distance metric for the original Euclidean distance, and the corresponding algori...
متن کاملA Fuzzy C-means Algorithm for Clustering Fuzzy Data and Its Application in Clustering Incomplete Data
The fuzzy c-means clustering algorithm is a useful tool for clustering; but it is convenient only for crisp complete data. In this article, an enhancement of the algorithm is proposed which is suitable for clustering trapezoidal fuzzy data. A linear ranking function is used to define a distance for trapezoidal fuzzy data. Then, as an application, a method based on the proposed algorithm is pres...
متن کاملTransactions on Engineering and Sciences, Vol. I, August 2013
This paper presents a latest survey of different technologies using fuzzy clustering algorithms. Clustering approach is widely used in biomedical field like image segmentation. A different methods are used for medical image segmentation like Improved Fuzzy C Means(IFCM), Possibilistic C Means(PCM),Fuzzy Possibilistic C Means(FPCM), Modified Fuzzy Possibilistic C Means(MFPCM) and Possibilistic F...
متن کامل